Collective Information Extraction with Relational Markov Networks

نویسندگان

  • Razvan C. Bunescu
  • Raymond J. Mooney
چکیده

Most information extraction (IE) systems treat separate potential extractions as independent. However, in many cases, considering influences between different potential extractions could improve overall accuracy. Statistical methods based on undirected graphical models, such as conditional random fields (CRFs), have been shown to be an effective approach to learning accurate IE systems. We present a new IE method that employs Relational Markov Networks (a generalization of CRFs), which can represent arbitrary dependencies between extractions. This allows for “collective information extraction” that exploits the mutual influence between possible extractions. Experiments on learning to extract protein names from biomedical text demonstrate the advantages of this approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relational Markov Networks for Collective Information Extraction

Most information extraction (IE) systems treat separate potential extractions as independent. However, in many cases, considering influences between different potential extractions could improve overall accuracy. Statistical methods based on undirected graphical models, such as conditional random fields (CRFs), have been shown to be an effective approach to learning accurate IE systems. We pres...

متن کامل

Stacked Graphical Learning

In reality there are many relational datasets in which both features of instances and the relationships among the instances are recorded, such as hyperlinked web pages, scientific literature with citations, and social networks. Collective classification has been widely used to classify a group of related instances simultaneously. Recently there have been several studies on statistical relationa...

متن کامل

Machine Reading Using Markov Logic Networks for Collective Probabilistic Inference

DARPA’s Machine Reading project is directed at extracting specific information from natural language text such as events from news articles. We describe a component of FAUST, a system designed for machine reading, which combines stateof-the-art information extraction (IE), based on statistical parsing and local sentencewise analysis, with global article-wide inference using Markov Logic Network...

متن کامل

Nonlinear Relational Markov Networks with an Application to the Game of Go

It would be useful to have a joint probabilistic model for a general relational database. Objects in a database can be related to each other by indices and they are described by a number of discrete and continuous attributes. Many models have been developed for relational discrete data, and for data with nonlinear dependencies between continuous values. This paper combines two of these methods,...

متن کامل

Relational Knowledge Extraction from Neural Networks

The effective integration of learning and reasoning is a well-known and challenging area of research within artificial intelligence. Neural-symbolic systems seek to integrate learning and reasoning by combining neural networks and symbolic knowledge representation. In this paper, a novel methodology is proposed for the extraction of relational knowledge from neural networks which are trainable ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004